Student Session Topic: Related Rate Problems

Related Rate problems appear occasionally on the AP calculus exams. Typically there will be a
straightforward question in the multiple-choice section; on the free-response section a related rate
guestion will be part of a longer question or, occasionally, an entire free-response question.

The thing with related rate questions is that there are, apparently, only a limited number of situations in

which they appear — cones or cylinders being filled or emptied, the areas or circumferences of circles increasing
or decreasing, people walking away from lampposts, ladders sliding down walls, vehicles moving in
perpendicular directions, etc. These appear in all the textbooks and it is difficult to find suitable new questions.

What you should be able to do:

Read, understand and translate the verbal description into symbols relating the variables that
are changing.

Understand what quantities are changing and which are constant throughout the problem.

Understand the geometry of the situation. Use geometric relationships to replace a variable
with another. This may require working with similar figures or the Pythagorean Theorem.

Do implicit differentiation with respect to time.

A common misunderstanding is to substitute the specific values of variables into the equation

before differentiating. Any gquantity that does not change during the course of the problem can be
substituted at the beginning. Any quantity that changes should not be substituted until the derivative is
being evaluated at the specific time stated in the question.

Questions:
Free-response questions for the prep session: 2002 AB 5 (non-calculator), 2008 AB 3 (calculator),
2010B AB3 (calculator) and 2003 AB 5/BC 5 (non-calculator).
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2002 AP® CALCULUS AB FREE-RESPONSE QUESTIONS
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5. A container has the shape of an open right circular cone, as shown in the figure above. The height of the
container is 10 cm and the diameter of the opening is 10 cm. Water in the container is evaporating so that

its depth & is changing at the constant rate of T—g cm/hr.

(Note: The volume of a cone of height & and radius r is givenby V = %mzh‘)

{(a) Find the volume V of water in the container when h = 5 cm. Indicate units of measure.

(b) Find the rate of change of the volume of water in the container, with respect to time, when & = 5 cm.
Indicate units of measure.

(c) Show that the rate of change of the volume of water in the container due to evaporation is directly
proportional to the exposed surface area of the water. What is the constant of proportionality?

©2002 The College Board. All rights reserved.
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AP Calculus AB-3 Final Draft for Scoring 2008

Oil is leaking from a pipeline on the surface of a lake and forms an oil slick whose volume increases at &
constant rate of 2000 cubic centimeters per minute. The oil slick takes the form of a right circular cylinder
with both its radius and height changing with time. (Note: The volume ¥ of a right circular cylinder with

radius » and height h is given by ¥ = ar*h.)

a) At the instant when the radius of the o1l shick 15 100 centimeters and the height is 0.5 centimeter, the
radius is increasing at the rate of 2.5 centimeters per minute. At this instant, what is the rate of change
of the height of the oil slick with respect to time, in centimeters per minute?

(b} A recovery device arrives on the scene and begins removing oil. The rate at which oil is removed is
R(r) = 40041 cubic centimeters per minute, where ¢ is the time in minutes since the device began
working, Qil continues to leak at the rate of 2000 cubic centimeters per minute. Find the time 1 when

\_ the oil slick reaches its maximum volume. Justify your answer.

J

{c) By the time the recovery device began removing oil, 60,000 cubic centimeters of oil had already
leaked. Write, but do not evaluate, an expression involving an integral that gives the volume of oil at

the time found in part (b).
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Multiple Choice

Non-Calculator

1. The volume of a cone of radius r and height h is given by V = %ﬂrzh . If the radius and the height

both increase at a constant rate of % centimeter per second, at what rate, in cubic centimeters per second, is the
volume increasing when the height is 9 centimeters and the radius is 6 centimeters?

(A) %7[ (B) 107 (C) 24r (D) 54r (E) 1087

2. The sides of the rectangle above increase in such a way that % =1 and % = 33—{ . At the instant

dt

when x =4 and y = 3, what is the value of 3—):?

A) % B)1 © 2 ©) 5 ©) 5

3. The top of a 25-foot ladder is sliding down a vertical wall at a constant rate of 3 feet per minute. When
the top of the ladder is 7 feet from the ground what is the rate of change of the distance between the bottom of
the ladder and the wall?

(A) —g feet per minute (B) —% feet per minute
© % feet per minute (D) g feet per minute

21 .
E) = feet per minute
(E) o5 p

4. If the base b of a triangle is increasing at a rate of 3 inches per minute while its height h is
decreasing at a rate of 3 inches per minute, which of the following must be true about the area A of the
triangle?

(A) Ais always increasing (B) A is always decreasing
(C) A'is decreasing only when b < h (D) A is decreasing only when b > h
(E) A remains constant
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5. In the triangle shown above, if € increases at a constant rate of 3 radians per minute, at what rate is x
increasing in units per minute when x equals 3 units?

A3 (B) % © 4 (D)9 ) 12

Calculator
6. Arailroad track and a road cross at right angles. An observer stands on the road 70 meters south of the
crossing and watches an eastbound train traveling at 60 meters per second. At how many meters per second is
the train moving away from the observer 4 seconds after it passes through the intersection:
(A) 57.60 (B) 57.88 (C) 59.20 (D) 60.00 (E) 67.40

7. The radius of a circle is decreasing at a constant rate of 0.1 centimeter per second. In terms of the
circumference C, what is the rate of change of the area of the circle, in square centimeters per second?

(A) —(0.2)2C (B) —(0.1)C
© —@c (D) (0.1)°C
27

(E) (0.2)>#C

8. The radius of a circle is increasing at a constant rate of 0.2 meters per second. What is the rate of
increase in the area of the circle at the instant when the circumference of the circle is 207 meters?

(A) 0.047 m?/sec (B) 0.47 m*/sec
(C) 47 m*/sec (E) 207 m* /sec
(E) 1007z m? / sec

9. The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant when the
radius of the sphere is 3 centimeters, what is the rate of change, in square centimeters per second, of the surface

area of the sphere? (The surface area S of a sphere with radius r is S = 4zr?.)

(A) —1087 (B) —T721 (C) —48x (D) —24r (E) 167
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AP® CALCULUS AB
2010 SCORING GUIDELINES (Form B)

Question 3

| 12 ft 1
r{o]lz2]4]6]8]|10]12 it
P | 0 |46|53|57|60]62]63 |

The figure above shows an aboveground swimming pool in the shape of a cylinder with a radius of 12 feet and a
height of 4 feet. The pool contains 1000 cubic feet of water at time r = 0. During the time interval 0 < <12

hours, water is pumped into the pool at the rate P(z) cubic feet per hour. The table above gives values of P(r)
for selected values of r. During the same time interval, water is leaking from the pool at the rate R(¢) cubic feet
per hour, where R(t) = 25:""%_ (Note: The volume ¥ of a cylinder with radius » and height & is given by

v =xrih)

(a) Use a midpoint Riemann sum with three subintervals of equal length to approximate the total amount of water

that was pumped into the pool during the time interval 0 <7 <12 hours. Show the computations that lead to
your answer.

(b) Calculate the total amount of water that leaked out of the pool during the time interval 0 <r <12 hours.

(c) Use the results from parts (a) and (b) to approximate the volume of water in the pool at time r = 12 hours.
Round your answer to the nearest cubic foot.

(d) Find the rate at which the volume of water in the pool is increasing at time ¢ = 8 hours. How fast is the water

level in the pool rising at r = 8§ hours? Indicate units of measure in both answers.
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2003 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

Sin

~

hin

5. A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure above. Let & be the depth of

the coffee in the pot, measured in inches, where h is a function of time f, measured in seconds. The volume V
of coffee in the pot is changing at the rate of —5x+/ft cubic inches per second. (The volume V of a cylinder with

radius r and height h is V = nrz.‘ik}

dh _  h
{a) Show that i 5
. _ - _ - . . dh R )
(b} Giventhat & = 17 at time ¢ = 0., solve the differential equation a5 for h as a function of 1.

{c) Atwhat time ¢ is the coffeepot empty?
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Student Session Topic: Related Rate Problem Solutions

The multiple choice answers are 1C, 2B, 3D, 4D, 5E, 6A, 7B, 8C, 9C

AP® CALCULUS AB 2002 SCORING GUIDELINES

Question 5
| 10 cm -

A container has the shape of an open right circular cone, as shown in the figure

above. The height of the container is 10 em and the diameter of the opening is 10 T
cm. Water in the container is evaporating so that its depth A is changing at the

3
constant rate of o em/hr.
10 cm

1,
(The volume of a cone of height h and radius r is given by V = Ewr"h.)

(a) Find the volume V of water in the container when b = 5 cm. Indicate units

:I
of measure. -
(b) Find the rate of change of the volume of water in the container, with respect Lo time, when & = 5 cm. Indicate

units Df measure.

(¢) Show that the rate of change of the volume of water in the container due to evaporation is directly proportional
to the exposed surface area of the water. What is the constant of proportionality?
5 . 1 {5} 125 . 1:V when h =5
T [ T 1y e - |
(a) When h =35, r = 5 Vi(5) = 37 {?} 5=151 cm
T 5 1
(b) —=—.,s0r==-h 1: r=—hin{(a)or (b
T 2 20 -
1 . 1 .. dV 1 ,dh
V =—.’I1—.lli.'}.lli.=—0?.lll"; —— = _qh* — )
N / 12 dt 4 di V' as a function of one variable
dV 1 [ 3 15 . 3
2 = saesy | — }= g em’ ; —.
T ]1_ 10, g Al in (a) or (b)
L OR
OR 5 dr
) di
dV 1 | 5dh dry dr 1dh
— = —-n{-'—+2-rh— ===
di 3 di di /" di 2 dt AV
dVv 1 ((25%/ 3} 5\ _( 3 2: —
Theors ~57 (7)) 22 (-5)
dt |y =-'--=-=§ 3 W44 10) 20 20 < —2 > chain rule or product rule error
_ 15 . cm"/ 1: evaluation at h =5
] hr
r dV
odV 1 ,dh 3, 1: shows — = k- area
(¢) —=—uh"—=——uh At
dt 4 dt 40 . .
3 3 2 1 1: identifies constant of
= —— (Y =—mr’ =——.area . .
0" (2r) m" 10 proportionality
3
The constant of proportionality is ~To-
3 . o
units of em® in (a) and cm/ﬁ‘_ in (b) 1: correct units in (a) and (b)
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AP Calculus AB-3 Final Draft for Scoring 2008

Oil is leaking from a pipeline on the surface of a lake and forms an oil slick whose volume increases at &
constant rate of 2000 cubic centimeters per minute. The oil slick takes the form of a right circular cylinder
with both its radius and height changing with time. (Note: The volume ¥ of a right circular cylinder with
radius r and height h is given by ¥ = ar’h.)
a) At the instant when the radws of the o1l shick 1s 100 centimeters and the height is 0.5 centimeter, the )
radius is increasing at the rate of 2.5 centimeters per minute. At this instant, what is the rate of change
of the height of the oil slick with respect to time, in centimeters per minute?
(b} A recovery device arrives on the scene and begins removing oil. The rate at which oil is removed is
R(r) = 40041 cubic centimeters per minute, where ¢ is the time in minutes since the device began
working, Qil continues to leak at the rate of 2000 cubic centimeters per minute. Find the time 1 when
\_ the oil slick reaches its maximum volume. Justify your answer. Y,
{c) By the time the recovery device began removing oil, 60,000 cubic centimeters of oil had already
leaked. Write, but do not evaluate, an expression involving an integral that gives the volume of oil at

the time found in part (b).
C_ _ av _ 3/ L av _ dar _ 54
(a) When r =100 emand h = 0.5 cm. = 2000 cm /111.111 1: e 2000 and = 2.5
4: . dv
and % =2.5 cm/min. 2 : expression for ar
1 : answer
av . _ .. .dr 2dh
ar = T
2000 = 277(100)(2.5)(0.5) +z(100)2%
% = 0.038 or 0.039 cm/min
(b) ‘i,—I: = 2000 — R(z). so a;_f = 0 when R(z) = 2000. 1: R(t) = 2000
3:9 1:answer

This occurs when f = 25 minutes. — .
1 : justification

Si11cei?—1:>0f01'0<t<:25 and a;—f{{) for r > 25,

the oil slick reaches its maximum volume 25 minutes after the
device begins working.

(c) The volume of oil. in em’. in the slick at time # = 25 minutes 5. { 1 : limits and 1nitial condition

25 - .
is given by 60,000 + [ . (2000 - R(r)) d. 1 : integrand

©2008 The College Board. All rights reserved.
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AP® CALCULUS AB
2010 SCORING GUIDELINES (Form B)

Question 3

| 12 ft 1
t |lo|2]|4|6]|8]10]12
P(f)| 0|46|53|57|60]|62|63

The figure above shows an aboveground swimming pool in the shape of a cylinder with a radius of 12 feet and a
height of 4 feet. The pool contains 1000 cubic feet of water at time r = 0. During the time interval 0 < <12

hours, water is pumped into the pool at the rate P(z) cubic feet per hour. The table above gives values of P(r)

for selected values of r. During the same time interval, water is leaking from the pool at the rate R(¢) cubic feet

per hour, where R(r) = 25~ %%

v =xrih)

(a) Use a midpoint Riemann sum with three subintervals of equal length to approximate the total amount of water
that was pumped into the pool during the time interval 0 <7 <12 hours. Show the computations that lead to
your answer.

. (Note: The volume 7 of a cylinder with radius  and height h is given by

(b) Calculate the total amount of water that leaked out of the pool during the time interval 0 <r <12 hours.

(c) Use the results from parts (a) and (b) to approximate the volume of water in the pool at time r = 12 hours.
Round your answer to the nearest cubic foot.

(d) Find the rate at which the volume of water in the pool is increasing at time ¢ = 8 hours. How fast is the water
level in the pool rising at r = 8§ hours? Indicate units of measure in both answers.

12
(a) jo P(t)dt = 46-4+57-4+62-4 = 660 ft°

5. 1 : midpoint sum
" 1:answer

12 1 : integral
b R(t) dr = 225.594 fi° 2:
(b) jo (1) dr {l:answer
12 12
(© 1000+j0 P(?) m—jn R(t) dr = 1434.406 1 : answer

Attime t = 12 hours, the volume of water in the pool is
approximately 1434 ft°.

(d) #'(t) = P(t) = R(t) 1:7'(8)
, 0.4 3/
7'(8) = P(8) — R(8) = 60 — 2567 = 43.241 or 43.242 > /hr 1: equation relating f:’;’ and ij:
4: <
v =r(12)%h L
LLARS YYP L o s
di dt 1 : units of ftsl/hr and ft /hr
dh 1 dv
ar = a7 = - /hr
e B vV =it B 0.095 or 0.096 ft/hr
©2010 The College Board. All rights reserved.
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5. A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure above. Let & be the depth of
the coffee in the pot, measured in inches, where A is a function of time r, measured in seconds. The volume V
of coffee in the pot is changing at the rate of —5x+/ft cubic inches per second. (The volume V of a cylinder with
radius r and height h is V = ar*h.)

2003 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

N

5in

hin

dh _ h
{a) Show that Gc s
. . . . . dh i .
(b) Giventhat h = 17 attime ¢ = 0. solve the differential equation i = - 5 for h as a function of 1.
() At what time ¢ is the coffeepot empty?
(@) V =25k 1 % — _5xR
@k
dV h . iV
Vs ™ 5T 311 1. computes ¥
it L yrd 1 : computes o
dh —5adT Ji 1 : shows result
P
) dh ﬂ 1 : separates variables
dt 3 1 : antiderivatives
. . 1 : constant of integration
|-
ﬁfﬂl = —gfﬁ v 1 : uses initial condition h = 17
when { =0
1 . 1 : solves for b
Wk = — st+C
WIT =0+ C
! * Note: max 2/5 [1-1-0-0-0] if no constant
D1 2 of integration
h=——t 1"]
) ( ot
Note: 0/5 if no separation of variables
(c) {_ﬁg + J]','] =10 1 : answer
t = 1017
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