## The Derivative Function Graphically

Yesterday, we looked at the derivative of a function at a point. We also saw that the derivative takes on different values at different points and is itself a function.

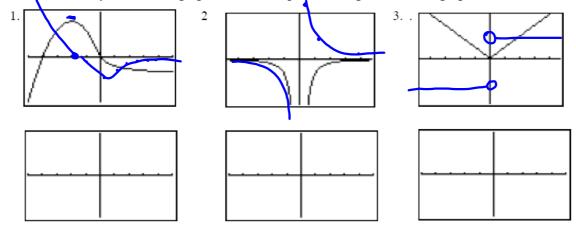
Remember, the derivative f'(a) is the slope of the tangent line to the graph of f at x = a.

One question we want to answer now is:

Given the graph of a function f, can we sketch a graph of the derivative function f'? And another question is:

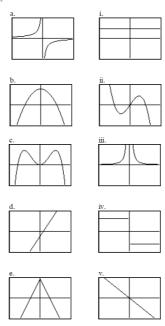
What does the derivative f' tell us about f?

d. On the graph of, sketch a graph of f'


big positive

Small positive

Small regative


More Examples: Given the graph of the function shown, sketch the graph of the derivative function f' directly below it.

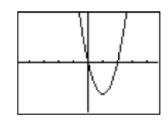
Remember, "the y value on the graph of f' is the slope of the tangent line to the graph of f."



## Graphs of f and f'

1. In the left column below are graphs of several functions. In the right-hand column - in a different order - are graphs of the associated  $\underline{\text{derivative}}$  functions. Match each function with its derivative. (Note: The scales on the graphs are not all the same.)




 $<sup>2.(</sup>a) \quad \text{Sketch a graph of the} \ \frac{\text{derivative}}{\text{of each function labeled (i) - (v) in the right column of the preceding problem.}$ 

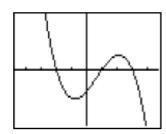
<sup>(</sup>b) (Optional!) For each function labeled (a) - (e) in the left column of the preceding problem, sketch a graph of a function whose <u>derivative</u> is the function shown.

The second question we wanted to answer was: What does the derivative f' tell us about f?

Examples: Below is the graph of f', the derivative of a function f.

1.




On what interval(s) is the function f

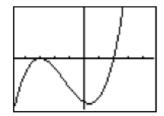
- a. increasing?
- b. decreasing? \_\_\_\_\_

At what x-value does f have a

c. maximum? \_\_\_\_\_ d. minimum? \_\_\_\_\_

2.




On what interval(s) is the function f

- a. increasing?
- b. decreasing?

At what x-value does f have a

c. maximum? \_\_\_\_\_ d. minimum? \_\_\_\_\_

3.



On what interval(s) is the function f

- a. increasing?
- b. decreasing?

At what x-value does f have a

c. maximum? \_\_\_\_\_ d. minimum? \_\_\_\_\_

Using table values and applying derivative rules pg. 2

Two functions, f(x) and g(x), are continuous and differentiable for all real numbers. Some values of the functions and their derivatives are given in the following table.

| I | Х     | 0             | 1   | 2              | 3  | 4              |
|---|-------|---------------|-----|----------------|----|----------------|
|   | f(x)  | $\frac{1}{2}$ | 1 3 | 1              | -1 | 3              |
|   | g(x)  | -2            | 1   | $-\frac{1}{2}$ | 2  | $-\frac{1}{3}$ |
|   | f'(x) | 3 2           | 5 3 | $\frac{1}{4}$  | 0  | $-\frac{4}{5}$ |
|   | g'(x) | -1            | 2 3 | -4             | -3 | $-\frac{1}{3}$ |

Based on the table, calculate the following:

(a) 
$$\frac{d}{dx}(f(x)+g(x))$$
, evaluated at  $x = 4$ 

$$\frac{d}{dx}(f(x)g(x)), \text{ evaluated at } x = 1$$
 Product

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right)$$
, evaluated at  $x=0$  Quatient

| X     | 0             | 1      | 2              | 3  | 4              |
|-------|---------------|--------|----------------|----|----------------|
| f(x)  | $\frac{1}{2}$ | 1<br>3 | 1              | -1 | 3              |
| g(x)  | -2            | 1      | $-\frac{1}{2}$ | 2  | $-\frac{1}{3}$ |
| f'(x) | 3<br>2        | 5 I 3  | $\frac{1}{4}$  | 0  | $-\frac{4}{5}$ |
| g'(x) | -1            | 2 3    | -4             | -3 | $-\frac{1}{3}$ |

(d) 
$$\frac{d}{dx}(f(g(x)))$$
, evaluated at  $x = 3$