Average Rate of Change, Instantaneous Rate of Change, and the Definition of the Derivative

Example: Given $f(x) = x^3 - 9x$.

(2 stand and deliver cards)

1. Can you sketch the graph of f without your calculator? (Sure you can!)

(Hint: Find the x-intercepts. Notice there is no y scale, just estimate)

Check your sketch by graphing f on your calculator.

 $f(x)=X(x_3-a)$ 0 = X(x+3)(x-3) X=0,-3,3

a. Find the average rate of change of f from x = 1 to x = 4. C(x) = -8

$$\Omega(4) = 4^3 - 36 = 64 - 36 = 28$$

$$\frac{f(4)-f(1)}{4-1} = \frac{28+8}{4-1} = \frac{36}{3}$$
= 12

<u>b. Write</u> the equation of the secant line that passes through the function at x = 1 and x = 4. When finished, graph the secant line on your calculator.

When finished, graph the secant line on your calculator.

(1,-8)
$$M=12$$
 $18=12(X-1)$
 $18=12(X-1)$
 $18=12(X-1)$

C. Estimate the instantaneous rate of change of fat $x=2$.

d. Write the equation of the tangent line to f at x = 2. When finished, graph the tangent

2. The Tangent Line Problem (in general) and the Definition of the Derivative

The Problem: Given a function f, and a number a, find the slope of the tangent line to f at x = a. Let's look at this graphically. (Pay close attention to the notation used.)

(a) f(a) (ath) f(ath)

as hoso
Slope of secant line
becomes
Slope of famentine

Stand and Deliver

Calculus the Musical: Differientabul

2.1

Limit Definition to Find a Derivative

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

3. Example: If $f(x) = x^2 + 4x$, find the slope of the tangent line to f at a a = 1; i.e., find f'(1).

f'(1) =

4. **Practice:** If $f(x) = x^2 + 4x$, use the definition of the derivative to find f'(x) for x = -5, -4, -3, -2, -1, and 0.

assign a number to a group

Place the values in the chart below.

х	-5	-4	-3	-2	-1	0	1
f(x)							6

f'(x) =

So, the derivative of a function is also a function!

5. Note: Built into your calculator is a feature that will approximate derivatives of functions at a specific number.

To evaluate f'(1) for $f(x) = x^2 + 4x$ in calculator...

6. Definition of the Derivative Function f'(x).

Since, from #4 above, the derivative of a function appears to be a function itself, we can use the definition of the derivative at a number $x = a_{\epsilon_n} f'(a)$, to obtain the definition of a derivative function f'(x). This results in:

f'(x) =

- 7. Examples:
- a. Use the definition of the derivative function f'(x) to show that the derivative of $f(x) = x^2 + 4x$ is f'(x) = 2x + 4.

b. Use the definition of the derivative function f'(x) to show that the derivative of $f(x) = -3x^2 - 5$

Stand and Deliver

2.1

- 3 Scenarios when function is not differentiable
- 1. not continuous
- 2. corner or cusp
- 3. vertical tangent line

1. not continuous

2. corner or cusp

3. vertical tangent line

scroll down

