Introduction to Limits

Both of the major calculus concepts - the derivative and the integral - rely on an understanding of the concept of a limit. So let's develop the concept of a limit. It's important that we understand this concept!

An important question: Given a function f, and a number a. As x gets closer and closer to a, but x does not equal \mathbf{a} , does $\mathbf{f}(\mathbf{x})$ get closer and closer to some number \mathbf{L} ?

If it does, then we say "the limit of f(x), as x approaches a, is equal to L", and we write _

Examples

1. Let f(x) = 2x + 1. As x gets closer and closer to some number, say 3, does f(x) get closer and closer to some value L? If it does, then we write $\lim_{x \to a} (2x + 1) = L$.

Let's see. Evaluate:

$$f(2.9) = 6.8$$

$$f(2.99) = 6.98$$

$$f(2.9) = 6.8$$
 $f(2.99) = 6.98$ $f(2.999) = 6.98$ $f(3.01) = 7.02$ $f(3.001) = 7.002$

$$f(3.1) = 7.2$$

$$f(3.01) = 7.02$$

$$f(3.001) = 7.002$$

So, the
$$\lim_{x \to 3} (2x + 1) = \frac{1}{2}$$

How else could we have evaluated this limit?

2. Find $\lim_{x\to 2} \frac{x-2}{x^2-2x}$. Can we find the limit by substituting 2 for x? _____ Explain!

3-2 = 0 indeterminant form

Let's look at this problem graphically. Graph the function $f(x) = \frac{x-2}{x^2-2x}$.

Evaluate the function close to x = 2 to determine the limit.

Conclusion: $\lim_{x \to 2} \frac{x-2}{2}$

$$\lim_{x\to 2}\frac{x-2}{x^2-2x}=$$

How could we have evaluated this limit analytically?
$$\lim_{x \to 2} \frac{x-2}{2} = \text{Factor } \text{N Simplify}$$

- 3. Given $f(x) = (1+x)^{2/x}$
 - a. Sketch a graph of the function for x > -1. Show all asymptotes with dotted lines and other undefined values with an "open circle".

b. Estimate the $\lim_{x\to 0} f(x)$ by evaluating f for values close to 0. Approximate the limit to 4 decimal places.

 $\lim_{x\to 0} (1+x)^{2/x} \approx \frac{7.389}{100}$

c. Do you know the exact value of $\lim_{x\to 0} (1+x)^{2/x}$?

4. Analytically, find the following limit.

$$\lim_{x \to -3} \frac{x^2 - 9}{2x^2 + 5x - 3}$$

$$\lim_{X \to -3} \frac{x-3}{ax-1}$$