AP® CALCULUS BC 2016 SCORING GUIDELINES

Question 6

The function f has a Taylor series about x = 1 that converges to f(x) for all x in the interval of convergence. It is known that f(1) = 1, $f'(1) = -\frac{1}{2}$, and the *n*th derivative of f at x = 1 is given by

$$f^{(n)}(1) = (-1)^n \frac{(n-1)!}{2^n}$$
 for $n \ge 2$.

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 1.
- (b) The Taylor series for f about x = 1 has a radius of convergence of 2. Find the interval of convergence. Show the work that leads to your answer.
- (c) The Taylor series for f about x = 1 can be used to represent f(1.2) as an alternating series. Use the first three nonzero terms of the alternating series to approximate f(1.2).
- (d) Show that the approximation found in part (c) is within 0.001 of the exact value of f(1.2).

(a)
$$f(1) = 1$$
, $f'(1) = -\frac{1}{2}$, $f''(1) = \frac{1}{2^2}$, $f'''(1) = -\frac{2}{2^3}$
 $f(x) = 1 - \frac{1}{2}(x-1) + \frac{1}{2^2 \cdot 2}(x-1)^2 - \frac{1}{2^3 \cdot 3}(x-1)^3 + \cdots$
 $+ \frac{(-1)^n}{2^n \cdot n}(x-1)^n + \cdots$

4 :
$$\begin{cases} 1 : \text{ first two term} \\ 1 : \text{ fourth term} \\ 1 : \text{ general term} \end{cases}$$

(b) R = 2. The series converges on the interval (-1, 3).

When x = -1, the series is $1 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$. Since the harmonic series diverges, this series diverges.

When x = 3, the series is $1 - 1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \cdots$. Since the alternating harmonic series converges, this series converges.

Therefore, the interval of convergence is $-1 < x \le 3$.

(c)
$$f(1.2) \approx 1 - \frac{1}{2}(0.2) + \frac{1}{8}(0.2)^2 = 1 - 0.1 + 0.005 = 0.905$$

(d) The series for f(1.2) alternates with terms that decrease in magnitude to 0.

$$|f(1.2) - T_2(1.2)| \le \left|\frac{-1}{2^3 \cdot 3}(0.2)^3\right| = \frac{1}{3000} \le 0.001$$

ms n

 $2: \left\{ \begin{array}{l} 1: \text{identifies both endpoints} \\ 1: \text{ analysis and interval of convergence} \end{array} \right.$

1 : approximation

$$2: \begin{cases} 1 : \text{ error form} \\ 1 : \text{ analysis} \end{cases}$$

2011-16 frq 6 scoring guidelines.notebook

March 02, 2020

. 2016
Name \underline{KEY} FRQ1: Power Series/Taylor Polynomials
2016 AP [®] CALCULUS BC FREE-RESPONSE QUESTIONS
6. The function f has a Taylor series about $x = 1$ that converges to $f(x)$ for all x in the interval of convergence. It is known that $f(1) = 1$. $f'(1) = -\frac{1}{2}$, and the <i>n</i> th derivative of f at $x = 1$ is given by $f^{(n)}(1) = (-1)^n \frac{(n-1)!}{2^n}$ for $n \ge 2$.
 (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 1. (b) The Taylor series for f about x = 1 has a radius of convergence of 2. Find the interval of convergence. Show the work that leads to your answer.
(c) The Taylor series for f about x = 1 can be used to represent f(1.2) as an alternating series. Use the first three nonzero terms of the alternating series to approximate f(1.2).
(d) Show that the approximation found in part (c) is within 0.001 of the exact value of $f(1.2)$. $ f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + \frac{p''(c)(x-c)^3}{3!} + \dots + \frac{(-1)(n-1)!}{2!} \frac{(x-c)^n}{n!} + \frac{f''(a)(x-c)^n}{n!} +$
b) Podius = 2 Nitruce 1 ± 2 $-1(x+23)$ obtained x and y into x $(1,2-1) + \frac{1}{3}(1,2-1)^{2}$ $(-1)^{n}(n-1)(x-1)^{n}(x-1)^{n}$ $(-1)^{n}(n-1)(x-1)^{n}(x-1)^{n$
$\frac{(-1)^{n}(x-1)^{n}}{2^{n}n} \qquad (-1)^{n} (3-1)^{n} \qquad .905$ $\frac{(-1)^{n}(x-1)^{n}}{2^{n}n} \qquad (-1)^{n} (3-1)^{n} \qquad .905$ $(-1)^{n}(x-1)^{n} \qquad .905$ $(-1)^{n}($

2005 key.pdf

2005.pdf