AP ${ }^{\circledR}$ CALCULUS BC 2012 SCORING GUIDELINES

Question 6

The function g has derivatives of all orders, and the Maclaurin series for g is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+3}=\frac{x}{3}-\frac{x^{3}}{5}+\frac{x^{5}}{7}-\cdots$.
(a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
(b) The Maclaurin series for g evaluated at $x=\frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0 . The approximation for $g\left(\frac{1}{2}\right)$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g\left(\frac{1}{2}\right)$ by less than $\frac{1}{200}$.
(c) Write the first three nonzero terms and the general term of the Maclaurin series for $g^{\prime}(x)$.
(a) $\left|\frac{x^{2 n+3}}{2 n+5} \cdot \frac{2 n+3}{x^{2 n+1}}\right|=\left(\frac{2 n+3}{2 n+5}\right) \cdot x^{2}$
$\lim _{n \rightarrow \infty}\left(\frac{2 n+3}{2 n+5}\right) \cdot x^{2}=x^{2}$
$x^{2}<1 \Rightarrow-1<x<1$
The series converges when $-1<x<1$.
When $x=-1$, the series is $-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots$
This series converges by the Alternating Series Test.
When $x=1$, the series is $\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\cdots$
This series converges by the Alternating Series Test.
Therefore, the interval of convergence is $-1 \leq x \leq 1$.
(b) $\left|g\left(\frac{1}{2}\right)-\frac{17}{120}\right|<\frac{\left(\frac{1}{2}\right)^{5}}{7}=\frac{1}{224}<\frac{1}{200}$
(c) $g^{\prime}(x)=\frac{1}{3}-\frac{3}{5} x^{2}+\frac{5}{7} x^{4}+\cdots+(-1)^{n}\left(\frac{2 n+1}{2 n+3}\right) x^{2 n}+\cdots$
[1 : sets up ratio
1 : computes limit of ratio
1 : identifies interior of interval of convergence
1 : considers both endpoints
1 : analysis and interval of convergence
$2 \cdot\{1:$ uses the third term as an error bound 1 : error bound
$2:\left\{\begin{array}{l}1: \text { first three terms } \\ 1: \text { general term }\end{array}\right.$

2012 AP ${ }^{\text {® }}$ CALCULUS BC FREE-RESPONSE OUESTIONS

6. The function g has derivatives of all orders, and the Maclaurin series for g is
$\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+3}=\frac{x}{3}-\frac{x^{3}}{5}+\frac{x^{5}}{7}-\cdots$. cheok endeoints
(a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g. (b) The Maclaurin series for g evaluated at $x=\frac{1}{2}$ is an alternating series whose terms decrease in absolute
value to 0 . The approximation for $g\left(\frac{1}{2}\right)$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that
this approximation differs from $g\left(\frac{1}{2}\right)$ by less than $\frac{1}{200}$.
(c) Write the first three nonzero terms and the general term of the Maclaurinsteries for $g^{\prime}(x)$.

2005 key.pdf
(1) 2005.pdf

