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2013 AP° CALCULUS BC FREE-RESPONSE QUESTIONS

. . . . dy . ‘ . .- .
5. Consider the differential equation i _\'2 (2x+2). Let y = f(x) be the particular solution to the differential

equation with initial condition f(0) = —1.

, ‘ : . , . |
(b) Use Euler’s method, starting at x = 0 with two steps of equal size, to approximate f(E)

(c) Find y = f(x), the particular solution to the differential equation with initial condition f(0) = —1.
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Question 5

(b) f[%] = f(0)+ f’(O)(%) 5 ( 1: Euler’s method

. " | 1: answer
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(c) i—l =17(2x+2) 1 : separation of variables
ﬂi" 1 : antiderivatives
—5 =(2x+2)dx 5: ¢ 1:constant of integration

y

v 1 : uses initial condition
f? = _[(2-“ +2)dx 1 : solves for y
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Note: 0/5 if no separation of variables
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71.

Forestry The value of a tract of timber is V(z) % 100,000¢%5"
where 1 is the time in years, with t = 0 cog sponing to 2008.
If money earns interest continuously at/10%, the present value
of the timber at any time ¢ is A(z) = V(#)e™ %!, Find the year in
which the timber should be harvested to maximize the present

value function, 1t /_a, - ot
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EXAMPLE [ Newton's Law of Cooling

Let y represent the temperature (in °F) of an object in a room whose temperature is
kept at a constant 60°. If the object cools from 100° to 90° in 10 minutes, how much
longer will it take for its temperature to decrease to 80°?

Solution From Newton’s Law of Cooling, you know that the rate of change in y is
proportional to the difference between y and 60. This can be written as

¥ =k(y —60), 80 <y < 100.

To solve this differential equation, use separation of variables, as follows.

Z’ = Ky — 60) Differential equation
( ! ) dy = kdt Separate variables
y — 60
J L dy = Jk dt Integrate each side.
y— 60"
Inly — 60| = kt + C, Find antiderivative of each side.

Because y > 60, |y — 60| =y — 60, and you can omit the absolute value signs.
Using exponential notation, you have

y—60=¢€""C >y =60+ Ce C=eb
Using y = 100 when ¢ = 0, you obtain 100 = 60 + Ce*® = 60 + C, which implies
that C = 40. Because y = 90 when r = 10,
90 = 60 + 40610
30 = 40¢'%*
k=151n2= —002877.
So, the model is

y = 60 + 40g~ 002877 Cooling model

and finally, when y = 80, you obtain

80 = 60 + 40707

20 = 40028771
1

2= 8—002277.'
In}=—002877t
1 = 24.09 minutes.

So, it will require about 14.09 more minutes for the object to cool to a temperature of
80° (see Figure 6.11). ]
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73.

Newton’s Law of Cooling When an object is removed from
a furnace and placed in an environment with a constant
temperature of 80°F, its core temperature is 1500°F. One hour
after it is removed, the core temperature is 1120°F. Find the
core temperature 5 hours after the object is removed from the

furnace.
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