6.2 Growth and Decay

$$(\cos y+2)rac{dy}{dx}=2x$$
 and $y(1)=0.$

What is x when $y=\pi$?

https://www.khanacademy.org/math/ap-calculus-ab/ab-differential-equations-new/ab-7-7/v/using-particular-solution-to-separable-differential-equation

(3:17)

Exponential models & differential equations (Part 1)

https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/exponential-models-diff-eq/v/modeling-population-with-simple-differential-equation (7:41)

Exponential models & differential equations (Part 2)

https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/exponential-models-diff-eq/v/particular-solution-given-initial-conditions-for-population

(4:52)

Worked example: exponential solution to differential equation

https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/exponential-models-diff-eq/v/exponential-solution-to-differential-equation

(4:26)

Ex. 1

a) Solve the differential equation:

$$\frac{dx}{dx} = \frac{dy}{4} = \frac{4-x}{dx}$$

$$\int \frac{dy}{dx} = \frac{4-x}{4-x} dx$$

$$\int \frac{dy}{dx} = \frac{4-x}{4-x} dx$$

b) Solve the differential equation:

$$y' = x(1+y)$$

$$dx \cdot \frac{dy}{dx} = x(1+y) dx \qquad \text{Separation of variables}$$

$$\frac{dy}{(1+y)} = \frac{x(1+y)}{(1+y)} dx$$

$$\int \frac{1}{1+y} dy = \int x dx$$

$$\int \frac{1}{1+y} dx = \int \frac{1}{1+y} dx$$

c) Solve the differential equation:

$$\frac{dy}{dt} = \frac{1}{3}t$$

- find the general solution
- graph particular solution that has (0, 10) as a point.

$$\int dy = \int \frac{1}{3}t \, dt$$

$$Y = \frac{1}{3} \cdot \frac{t^{2}}{2} + C$$

$$Y = \frac{t^{2}}{6} + C \implies \text{general solution}$$

$$10 = \frac{3^{2}}{6} + C$$

$$10 = C$$

d) The rate of change of P with respect to t is proportional to 10 - t.
Find the function.

$$\frac{dP}{dt} = K(10-t)$$

$$\int dP = \int K(10-t) dt$$

$$P = K \int 10-t dt$$

$$P = K \left(10t - \frac{t^2}{a} + c\right)$$

$$= K(10t - \frac{t^2}{a}) + C$$

The rate of change of N is proportional to N.

When
$$t = 0$$
, $N = 250$ and when $t = 1$, $N = 400$.

What is the value of N when $t = 4$?

$$\frac{dN}{dt} = KN$$

$$\frac{dN}{dt} = K$$

$$\frac{dN}{dt} = N$$

$$\frac{dN}{dt$$

If
$$y' = ky$$
, then $y = Ce^{kt}$

Let's prove it!

$$\frac{dy}{dt} = ky$$

$$\frac{dy}{dt} = ky$$

$$\frac{dy}{y} = kt$$

$$\frac{dy}{y} = kt + C$$

$$\frac{dy}{dt} = kt + C$$

Stand and Deliver

Growth and Decay

6.2

$$y' = ky$$

$$y = Ce^{kt}$$

The rate of change of y is proportional to y.

C = initial amountk = proportionality constant

Word Problems in Groups! In this order: 64, 71, 71

64. Bacteria Growth The number of bacteria in a culture is increasing according to the law of exponential growth. There are 125 bacteria in the culture after 2 hours and 350 bacteria after 4 hours.

- (a) Find the initial population.
- (b) Write an exponential growth model for the bacteria population. Let t represent time in hours.
- (c) Use the model to determine the number of bacteria after
- (d) After how many hours will the bacteria count be 25,000?

The rate of change of a with respect to b is inversely proportional to the square root of b. Find the function.