
end of day 1

The graph of the derivative of a function is given. Sketch the graphs of two functions that have the given derivative.

Given: $d y=2 x$
$d x$

$$
\begin{aligned}
& \text { a. Integrate to find the general solution } \\
& d x \\
& d y \\
& d x=2 x d x \\
& \int d y=\int 2 x d x \\
& y=\int 2 x d x
\end{aligned} \quad \begin{aligned}
& y=\int 2 x d x \\
& y=2 \frac{x^{2}}{2}+C \\
& y=x^{2}+C
\end{aligned}
$$

b. If the point $(3,7)$ lies on the graph, find the particular solution.

$$
\begin{aligned}
& y=x^{2}+c \\
& 7=3^{2}+c \\
& 7=9+c \\
& -2=c
\end{aligned}
$$

A slope field consists of line segments with slopes given by the differential equation These line segments give a visual perspective of the slopes of the solutions of the differential equation.
a. Sketch two approximate solutions of the differential equation on the slope field, one of which passes through the point. b. Use integration to find the particular solution.
$(p 256 \# 50) \frac{d y}{d x}=x^{2}-1,(-1,3)$
$d x \cdot \frac{d y}{d x}=\left(x^{2}-1\right) d x$

$$
\int d y=\int\left(x^{2}-1\right) d x
$$

$$
y=\int_{3} x^{2}-1 d x
$$

$$
y=\frac{x^{3}}{3}-x+c
$$

$$
1 \quad 3=\frac{(-1)^{3}}{3}-(-1)+c
$$

$$
3=-\frac{1}{3}+1+c
$$

$$
3=\frac{2}{3}+c
$$

$$
\frac{-\frac{1}{3}}{\frac{-2}{3}} \quad \frac{7}{3}=c
$$

$$
y=\frac{x^{3}}{3}-x+\frac{7}{3}
$$

$$
\begin{aligned}
& \text { Solve the differential equation: - Integrate } \\
& \begin{array}{r}
f^{\prime}(x)=6 x-8 x^{3}, \quad f(2)=3 \\
(2,3) \\
(x, y)
\end{array} \\
& \text {-anti derivative } \\
& f(x)=\int 6 x-8 x^{3} d x \\
& y=\frac{6 x^{2}}{2}-\frac{8 x^{4}}{4}+c \\
& y=3 x^{2}-2 x^{4}+c \\
& 3=3(2)^{2}-2(2)^{4}+c \\
& 3=12-32+c \\
& 3=-20+c \\
& 23=c \\
& y=3 x^{2}-2 x^{4}+23
\end{aligned}
$$

Solve the differential equation:

$$
\begin{aligned}
& f^{\prime \prime}(x)=x^{2}, f^{\prime}(0)=6 \\
& f^{\prime \prime}(x)=\int x^{2} d x \\
& f^{\prime}(x)=\frac{x^{3}}{3}+c \\
& 6=\frac{0^{3}}{3}+c \\
& 6=c \\
& f^{\prime}(x)=\frac{x^{3}}{3}+6 \\
& f(x)=\frac{x^{4}}{4}+3 \\
& f(x)=\frac{x^{4}}{12}+6 x+c \\
& f(x) \\
& 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vertical Motion } \\
& \text { A ball is thrown upward from a height } \\
& \text { of } 2 \mathrm{~m} \text { with a velocity of } 10 \mathrm{~m} / \mathrm{s} \text {. } \\
& \text { What is its position function and } \\
& \text { what is its max height? }
\end{aligned}
$$

$$
\begin{aligned}
& s^{\prime}(t)=v(t)=-9.8 t+c \\
& v(t)=-9.8 t+c \\
& v(0)=10 \\
& 10=-9.8(0)+c \\
& 10=c \\
& V(t)=-9.8 t+10 \\
& \int V(t)=\int-9.8 t+10 d t \\
& S(t)=\frac{-9.8 t^{2}}{2}+10 t+c \\
& s(0)=2 \\
& S(t)=-4.9 t^{2}+10 t+c \\
& 2=0+0+c \\
& 2=c \\
& S(t)=-4.9 t^{2}+10 t+2 \\
& V(t)=-9.8 t+10=0 \\
& 10=9.8 t \\
& \frac{10}{9.8}=t \quad \text { time when } \begin{array}{l}
\text { Reaches max height }
\end{array} \\
& S\left(\frac{10}{9.8}\right)=-4.9\left(\frac{10}{9.8}\right)^{2}+10\left(\frac{10}{9.8}\right)+2
\end{aligned}
$$

Stand and Deliver

down derivatives

Rate of Change

```
\(s(t)=\) position
        \(v(t)=s^{\prime}(t)=\) velocity
    speed \(=|v(t)|\)
\(a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=\) acceleration
```

up integrals
now you can start anywhere on the ladder and go up or down

