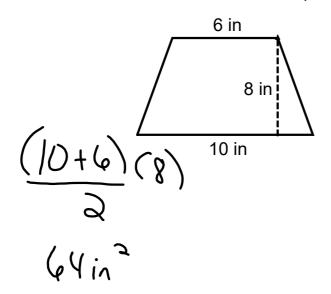
4.6 The Trapezoidal Rule

Objective: You will be able to:

 approximate a definite integral using the Trapezoidal Rule

Warm Up

Find the area of the trapezoid:

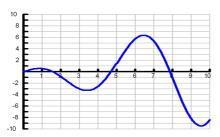


Why Approximate Integration?

• Can't always find an antiderivative

Example:
$$\int_0^1 e^{x^2} dx$$

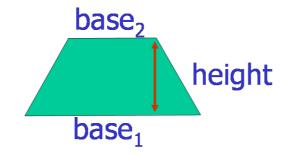
• Don't always know the function



Definition

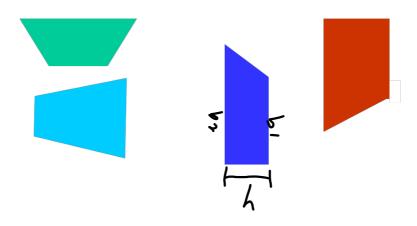
Area of a Trapezoid

$$Area = h(\frac{base_1 + base_2}{2})$$



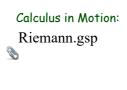
Important Idea

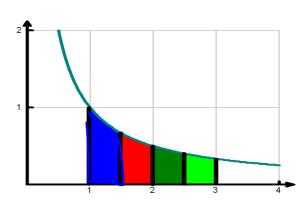
Trapezoids come in all shapes and sizes...



Important Idea

Area under a curve can also be defined as the sum of the area of the trapezoids under the curve.





$$\int_{a}^{b} f(x)dx \approx Trapezoid_{n} = \frac{1}{2} \cdot \frac{b-a}{n} \cdot (L_{n} + R_{n})$$

Trapezoidal Rule:

$$= \frac{b-a}{2n} [f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n)]$$

Use the Trapezoidal approximation to approximate the value of the definite integral for n=4.

Compare your answer with the exact value of the definite integral.

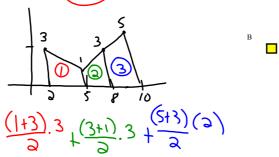
$$\int_0^2 x^3 dx$$

5. The table below gives data points for a continuous function f on [2, 10].

х	2	5	\mathbf{V}	8	10	
f(x)	3	1	/ \$	3	5	

Using subdivisions [2, 5], [5, 8] and [8, 10], what is the trapezoid approximation of $\int_{0}^{10} f(x) dx$?

(E) 40



$$\frac{1}{2}(4.3 + 4.3 + 8.2)$$

$$\frac{1}{2}(40)$$

$$\frac{1}{2}(40)$$

$$\frac{1}{2}(40)$$

2005 AB-3/BC-3

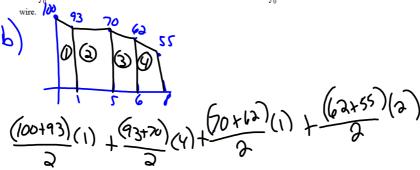
Distance x (cm)	0	1	5		6	8	55-62 -7			
Temperature $T(x)$ (°C)	100	93	70		62	55) (-2 2			

A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature T(x), in degrees Celsius (°C), of the wire x cm from the heated end. The function T is decreasing and twice differentiable.

- The function T is decreasing and twice differentiable.

 (a) Estimate T'(7). Show the work that leads to your answer. Indicate units of measure.
- (b) Write an integral expression in terms of T(x) for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.

(c) Find $\int_0^8 T'(x) dx$, and indicate units of measure. Explain the meaning of $\int_0^8 T'(x) dx$ in terms of the temperature of the



Riemann.gsp