Chapter 9

Infinite Series
The importance of understanding the infinitestimals...

-How much is a drop of lemonade? -A drop I'll give you for nothin'!

-Can I get a cupfil of drops?

9.1 Sequences

Usually sequences and series are thought of together

Sequence: a listing of numbers

Ex. 1 $1,2,3,4, \ldots$

goes off to ∞
(Diverges)
Ex. 2
$\longrightarrow 0$
(Converges)

The thing you will want to ask yourself:
Does the sequence converge?

Monotonic:

1) increasing
2) decreasing

Oscillate:
$0,1,0,-1,0,1,0,-1, \ldots$

Ex. 2
1, .1, .01, . $001, .0001, \ldots$

1st term	2nd term	3rd term	4th term
1	2	3	4
a_{1}	a_{2}	a_{3}	a_{4}
1	.1	.01	.001

Typically you are given a formula

$$
a_{n}=\frac{3(-1)^{n}}{n!}
$$

In case you forgot... 5 factorial

$$
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1
$$

$$
\begin{aligned}
& a_{n}=\frac{3(-1)^{n}}{n!}\left\{\begin{array}{l}
b y \text { Define } \\
0!=1
\end{array}\right. \\
& a_{1}=\frac{3(-1)^{1}}{1!} \\
& 3(-1) \\
& \frac{3(1)}{2} \\
& \frac{\beta(-1)}{\beta \cdot 2 \cdot 1} \\
& -3 \\
& 3 / 2 \\
& -1 / 2
\end{aligned}
$$

For a particular sequence, does it converge or diverge?

We wont cover every case, but this is what you'll do.

Ex. 1

$$
a_{n}=n(n-1)
$$

If you have no feeling, just start plugging in numbers. It might give some intuition of what is going on. Best mathematicians do this to get a feel of what's going on.

$$
\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
1(1-1) & 2(2-1) & 3(3-1) & 4(4-1) \\
0 & 2 & 6 & 12
\end{array}
$$

Diverge

Ex. 1

$$
a_{n}=n(n-1)
$$

n is going to be getting bigger and bigger

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n(n-1)=\infty \\
& \infty(\infty) \quad \text { diverges }
\end{aligned}
$$

Ex. 2

Could use L'Hopitals, denominator getting bigger much faster than numerator

but...
could also rewrite

[^0]Ex. 3

$$
\left\{\frac{(2 n-1)!}{(2 n+1)!}\right\} \begin{gathered}
\text { notation } \\
\text { same as }
\end{gathered} a_{n}=\frac{(2 n-1)!}{(2 n+1)!}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(2 n-1)!}{(2 n+1)!} \text { try to simplify } \ldots \\
& \frac{(2 n-1)!}{(2 n+1)(2 n)(2 n-1)!} \\
& \lim _{n \rightarrow \infty} \frac{1}{(2 n+1)(2 n)}
\end{aligned}
$$

Ex. 4

$$
\begin{aligned}
& a_{n}=\frac{\cos ^{2} n}{2^{n}} \\
& \lim _{n \rightarrow \infty} \frac{\cos ^{2} n}{2^{n}} \quad \frac{(\cos n)^{2}}{2^{n}} \frac{0 \leq n \leq 1}{2^{n}}
\end{aligned}
$$

Enter a sequence in your calculator

$\operatorname{seq}(n /(n+1), n, 1-10)$
math frac seq(n)(n+1) $2 \cos ^{\prime \prime}$
5.5 .6666666667.

Ans. Frac
$\left[\begin{array}{lllllll}\frac{1}{2} & \frac{2}{3} & \frac{z}{4} & \frac{4}{5} & \frac{5}{6} & \frac{6}{7}\end{array}\right.$

$$
\begin{aligned}
& 1,1,2,3,5,8,13,21,34 \\
& \text { Fibonacci Sequence }
\end{aligned}
$$

most famous recursive sequence

In Exercises 1-10, write the first five terms of the sequence.

$$
\begin{aligned}
& \text { 2. } a_{n}=\frac{3^{n}}{n!} \\
& 3,4.5,4.5,3.375,2.025
\end{aligned} \text { 8. } a_{n}=(-1)^{n+1}\left(\frac{2}{n}\right)
$$

In Exercises 11-14, write the first five terms of the recursively defined sequence.

$$
\begin{aligned}
& \text { 11. } a_{1}=3, a_{k+1}^{\downarrow}=2\left(a_{k}-1\right) \\
& a_{1}=3 \\
& a_{1+1}=a_{2}=2(3-1)=4 \\
& a_{2+1}=a_{3}=2(4-1)=6 \\
& a_{3+1}=a_{4}=2(6-1)=10 \\
& a_{4+1}=a_{5}=2(10-1)=18
\end{aligned}
$$

[^0]: converges if number inside does: $-1 \leq$ some number ≤ 1

